カテゴリー
雑記

眼球の IoT 化で光通信を受信できないのだろうか

人間が IOWN に対応できないのだろうか、と思った。

視覚を情報の入り口として考えると、眼球はすでに光を受信するための高度なセンサーである。もしここに通信機能を重ねることができれば、人間の身体そのものが情報ネットワークのノードになるのではないか。

もちろん、現実的には眼球の自由度や安全性の問題が大きい。可視光通信(Li-Fi)や光ファイバー通信を直接受信するとなると、生理的負荷も高く、実用化は容易ではないだろう。それでも、もし人体の一部が光通信を介してデータを受け取れるようになれば、人間とネットワークの関係は大きく変わる。

視覚を「見るための器官」から「通信のポート」として捉え直すと、情報の入口は脳ではなく身体そのものになる。
人間が IOWN の末端デバイスになる未来を期待したい。

カテゴリー
雑記

自動運転限定免許の必要性

AT 限定の次に必要なのは「自動運転限定免許」ではないかと思った。

久しぶりにレンタカーを借りて、ガソリンで動くいわゆる「自動車」に乗った。オートマチック車に分類されるモデルだったが、慣れない車両で、慣れない道路環境ということもあり、予想以上に緊張する体験になった。

ギアをドライブに入れると勝手に動き出す。ハンドブレーキという追加操作が必要で、常にアクセルを踏み続けなければならない。停止するたびにブレーキを踏み、再び発進するにはアクセルに踏み替える。ウインカーも自動では戻らない。人間の身体が、機械の制御装置として働くことを前提にした仕組みであることを、改めて思い知らされた。

さらに、エンジンをかけるという行為や、物理的なカギを開け閉めするという操作にも戸惑った。かつて当たり前だった一連の動作が、今ではもはや不自然に感じられる。車を動かすまでの手順が多すぎるのだ。スイッチを入れ、レバーを引き、ペダルを踏み、ハンドルを回す。この複雑なプロセスは、運転技術というより儀式に近い。

車の UX という観点で見ると、これらは過渡期の設計思想をそのまま引きずった構造でもある。ダッシュボードには数多くのスイッチやメーターが並び、どれが何を意味しているのか一見して分からない。速度や燃料残量以外に、実際どれほどの情報が必要なのだろうか。人間に判断を委ねるための仕組みが、そのまま混乱を生んでいるようにも見える。

MT から AT に移行したとき、クラッチという操作は不要になった。人は複雑な工程から解放され、運転は誰にでもできる行為になった。それと同じように、自動運転が標準となる時代では、アクセルやブレーキを踏む行為そのものが「過去の技術」になるだろう。機械が人に合わせる段階から、人が機械に触れなくなる段階へと移りつつある。

免許制度もまた、その変化に追いついていない。これまで免許証は「車を動かすための能力」を証明するものだった。だが、自動運転の普及後に求められるのは「車と対話する能力」や「システムを理解し、安全に介在する知識」である。運転操作ではなく、AI やアルゴリズムの挙動を理解し、異常時にどのように関わるか。その判断力こそが次の免許制度の中心になる。

AT 限定免許が登場したとき、クラッチを使わない運転に戸惑う人も多かった。それでも時代とともに、それが標準となり、MT は特殊技能になった。同じように、将来「自動運転限定免許」が導入されるとき、アクセルやブレーキを踏む行為は「過去の運転技術」として扱われるかもしれない。

運転技術の進歩とは、同時に人間が機械から離れていく過程でもある。自動運転限定免許は、車を制御するための資格ではなく、テクノロジーと共生するためのリテラシーを示す証になる。車を動かすのではなく、車と共に動くための免許。そうした制度の変化が、次の時代の交通を形づくっていくのだと思う。

カテゴリー
雑記

SoftBank は Intel を買収するのか?

以前、疑問に思って考えてみたことがある。その後実際に SoftBank による投資が発表され、明らかな動きがあった。そこで改めて、戦略的投資の発表前に思っていたことを記録として残しておきたい。これによって後に何が起きたのかを比較検証できるようにすることが、個人的な目的だ。

SoftBank による ARM 買収の経緯と現在地

2016 年の ARM 買収は、SoftBank が半導体の川上である設計 IP に軸足を置くという明確な意思表示だった。ARM のライセンスモデルは、中立性と拡張性によってモバイルを起点にプラットフォーム化し、IoT やサーバー、スーパーコンピューティングへと適用範囲を広げてきた。SoftBank はこの中立性を維持すると表明しつつ、IP の結合度を高める方向に舵を切り、サブシステム提供やサーバー向けの踏み込みを強めている。2023 年の再上場を経ても、ARM はグループの最重要資産であり、他の投資と連動する要に位置付けられている。

ARM を核にした次の一手

ARM を単なる IP 供給者に留めず、エコシステム全体の牽引役へ引き上げるために、周辺要素の獲得が続く。Graphcore の取得は AI アクセラレータ領域の足がかりであり、Ampere の買収はサーバー CPU の実働部隊をグループ内に取り込むという意図が読み取れる。ARM の低消費電力設計と、データセンターのスケールアウト潮流が組み合わさると、x86 一辺倒だったサーバー市場に別の最適点が立ち上がる。この構図は、後述する Intel をめぐる思考実験に直結する。

SoftBank と Nvidia の距離

かつて SoftBank は Nvidia の大株主であり、AI ブームの前段で強い関係を築いた。しかし売却で巨大な含み益の伸長機会を逃し、その後は協調と競争が同居する関係に変わった。日本国内の AI インフラや通信での共創は進む一方、グループ内に独自の AI チップの芽をいくつも植える動きは、Nvidia の寡占に揺さぶりをかける戦略とも読める。Nvidia は自ら ARM ベース CPU や NVLink を武器に垂直統合を強化しており、両者は重なり合いながらも、長期的には異なるゴールを見ている。

OpenAI を中核とする AI 投資戦略

OpenAI への巨額コミットメント、Oracle 等とのインフラ共同投資、国内での合弁構想。これらはソフトウェア側の牽引役を自陣営に引き込み、計算能力資源を先回りして確保する狙いの表れだ。AI の覇権はアルゴリズムの巧拙よりも、電力と半導体と資本を束ねる統治能力に収れんしつつある。SoftBank は資金供給者としてだけでなく、設計 IP とデータセンター構造の両端を握ることで、AI のスケールを自身のバランスシートと結びつける回路を描いている。

Intel という仮題

では、Intel はその回路にどう接続し得るか。市場の低迷、事業再編の思惑、製造とプロダクトの切り分けという文脈が重なり、買収や資本参加の観測が繰り返し浮上した。報道ベースでは、ARM が Intel のプロダクト部門に関心を示したが不成立に終わり、AI チップ製造の協業打診も生産能力の要件が合わず頓挫したとされる。公式な買収アプローチが存在したわけではないにせよ、部分取得や提携の可能性を探った痕跡はある。問いは単純だ。SoftBank が Intel を取り込む必然性はどこにあり、現実に通る道はあるのか。

戦略的整合性の検討

ARM は IP 指向で製造を持たない。Intel は製造力と x86 を核に広大な顧客網を抱えるが、モバイルや低消費電力の文脈では遅れをとった。二者を束ねれば、CPU の二大アーキテクチャを横断し、データセンターからエッジまで網羅する設計力と供給力を手にできる。AI インフラの垂直スタックにおいても、CPU と AI アクセラレータ、メモリ、インターコネクト、ファブを内包しうる。この絵柄は理屈としては美しい。さらに CHIPS 法の補助金や先端ファブのアクセスは、外部ファウンドリ偏重の脆弱性を補う魅力がある。

しかし理屈の美しさと実装可能性は別物である。米国が最重要資産と位置付ける Intel を外国資本が握る道は、政治と規制の二重壁に阻まれる。U.S. Steel の前例が示したように、政治判断で覆ることがある。独禁面でも、ARM の中立性とオープンなライセンスに疑念が生じるだけで反発は必至だ。業界各社は ARM を共通基盤と見なしており、特定グループの利益に偏る統合には強く反対するだろう。財務面の負荷、製造事業の運営という経営難度も加わる。よって、フル買収は現実解たり得ない。

実務的な代替路線

フルコントロールが閉ざされるなら、選択肢は分散する。特定事業の資本参加、共同設計、長期製造契約、国内外コンソーシアムの組成。ARM はサブシステム提供と共同最適化で存在感を高め、Ampere や Graphcore は製品を持ち込み、Rapidus や海外ファウンドリと複線的に製造能力を確保する。完全支配ではなく、仕様と資本と電力をつなぐハブとしての振る舞いを強化することが、SoftBank らしい現実解だ。

問題提起の再点検

US スチール型の政治阻止は十分にあり得る。半導体にまたがる越境投資は安全保障や産業政策の射程に入り、議会や労組、州政府の利害が絡む。独禁リスクも顕在だ。ARM の中立性が疑われれば、Apple や Qualcomm、Microsoft、Amazon、Google、さらには Nvidia まで、各国当局に働きかけるだろう。既存プレイヤーとの衝突も避けがたい。Nvidia は CPU と GPU の両輪で自立を強め、Apple は自社 SoC の戦略に直結する ARM の進路を注視している。衝突回避の現実解は、広範なステークホルダーに配当可能なインセンティブ設計と、ライセンスの透明性担保である。

日本政府の動きと接点

SBI によるメモリ構想は、PSMC 案の頓挫を経て SK 陣営との連携模索へと重心を移した。補助金枠組みは維持され、国内にメモリ能力を戻す探索が続く。ここに PFN のような国内 AI ベンチャーが連なると、AI 向けメモリ需要を起点にした生態系が生まれる可能性がある。並行して Rapidus は 2nm ロジックの量産を目指し、Tenstorrent との協業でエッジ AI 需要を取り込もうとしている。SoftBank は出資者として関与し、ARM や Ampere の設計を国内製造に接続する選択肢を持つ。国家の資本と民間の資本が相互補完する構図が、SoftBank にとってもリスク分散と政策整合の手段になる。

NVIDIA や Apple との関係管理

Nvidia とは協調と競合が併走する。国内 AI インフラや 5G 連携では協業しつつ、グループ内の AI チップ育成や ARM の深耕は、長期的に市場の力学を変える可能性がある。Apple については、ARM の中立性とライセンスの安定性が最重要の関心事だ。ARM が特定アーキテクチャや特定顧客に偏る印象を与えれば、関係は一気に冷える。したがって、ソフトウェアツールチェーンの開放性、ロードマップの公開性、差別化と中立性の両立が鍵になる。

それでも残る問い

買収は現実的でないとしても、なぜこの観測が繰り返し浮上するのか。答えは単純で、AI 時代の価値モデルが計算能力資源と電力と資本の連結に移行したからである。CPU の二大陣営、先端ファブ、AI アクセラレータ、メモリ、インターコネクト、クラウド、そして生成 AI プラットフォーム。これらを統べる者が次の 10 年を決める。SoftBank は資本と IP と顧客接点を持つが、決定的に不足するのは製造と電力の専有的アクセスである。だからこそ Intel が視野に入る。しかし視野に入ることと、手に入ることは別である。

結論

仮に SoftBank が Intel を丸ごと手にする道が閉ざされているとしても、分散的な連携で同等の機能を構築する道は残る。重要なのは、どの電力で、どの製造で、どのアーキテクチャを、どの資本構成で束ねるかという設計だ。買収という単発のイベントではなく、制度と資本と技術を通底させる設計力が試されている。数年後に振り返るとき、今日の観測が単なる噂ではなく、計算能力主義の時代における権力の再配置を先取りした思考実験だったと分かるかもしれない。

カテゴリー
雑記

OpenAI と AMD の提携にみる AI 時代の計算能力資源価値

生成 AI の拡張は、モデルの新規性ではなく計算能力資源の確保と運用構造で決まる段階に入った。OpenAI と AMD の複数年・複数世代にわたる提携は、その構図を端的に示している。単なる売買契約ではなく、資本・供給・電力・実装のレイヤーを束ね、相互の成長を担保する仕組みによって規模を前提にするゲームへ移行したという理解である。

要求される電力規模予測

提携の骨格はギガワット級の計算能力前提である。初期 1 ギガワット、累計で数ギガワット級という水準は、データセンターの建設と電力調達を分離して語れない規模であり、個別案件ではなく地域電力系統の計画に接続する。ここで重要なのは「ピーク消費電力」だけでなく「継続稼働に耐える供給信頼度」と「排熱処理を含む実効 PUE」である。AI トレーニングはスパイクではなく恒常負荷を前提にしやすく、系統側の安定度と補機の冗長設計がボトルネックになる。

加えて、モデルの進化は「計算当たり電力効率の改善」を相殺するかたちで総電力需要を拡大させる。半導体の世代交代で性能/ワットが伸びても、パラメータ規模やデータ総量の増加、マルチモーダル化による前処理・後段推論の付帯計算が需要を押し上げる。結果として、設備投資の主語はサーバーラックではなく、冷却系を含む土木・電力の領域へ移る。

計算能力市場の潜在的な問題

NVIDIA 支配の市場に対し、AMD の実装選択肢が増えても、光配線、先端 HBM、CoWoS などの製造能力が別のボトルネックとして顕在化する。さらに、ラック当たりの熱密度上昇は空冷から液冷への不可逆な転換を迫り、データセンター立地の制約を強める。結果、資本があっても直ちに計算能力資源へ変換できない転換遅延が発生する。

もうひとつの問題は、地政学的リスクである。国際的な緊張の高まりと輸出規制により、製造と配備のチェーンが分断されると、計画の遅延や再設計が連鎖する。

OpenAI の課題

OpenAI の第一の課題は、指数関数的に増大する計算需要の吸収と平準化である。研究開発・製品化・ API 提供を同時に走らせる構造では、学習クラスタと推論クラスタのキャパシティマネジメントが難しく、モデルの刷新と既存サービスを両立させる計画立案が肝になる。

第二に、単一ベンダー依存の解消である。NVIDIA 依存は供給逼迫と価格弾力性の欠如を生み、交渉余地を狭めた。ゆえに、AMD とのロードマップ共有は最適化余地と調達分散の両面で意味がある。

第三に、資本構造とガバナンスである。外部からの巨額コミットメントを巻き込みつつ、中立性と研究機動性を維持するためには、提携を束ねる契約設計が必要になる。過去の分裂危機を想起させる。資本の出し手が異なる意思決定を持ち込み始めると、研究アジェンダの整合が課題化する。

AMD の課題

AMD にとってのボトルネックは、製造キャパシティとソフトウェアエコシステムである。最新設計の製品では一定の競争力を持ち得るが、PyTorch・CUDA 生態系に匹敵する開発者体験を提供するには、ランタイム、コンパイラ、カーネル、分散訓練のツールチェーンの発展が不可欠となる。さらに、HBM 供給、パッケージングの歩留まり、冷却技術への対応といったハードの実装面が、納期と安定稼働の鍵を握る。

もうひとつは OpenAI と生み出す成果を市場全体に展開できるかどうかである。OpenAI と単一のプロジェクト・単一の製品として閉じずに一般化し、他の市場へ展開するパスを早期に用意できるか。単発大型案件の依存度が逆にリスクになることもある。

提携の戦略的意図

この提携の意図は単純である。OpenAI は計算能力資源の確保と多様化、AMD は市場からの信頼と需要の同時獲得である。

だが構造的にはもう一段ある。第一に、モデル・データ・計算・資本をひとつの流れの中に組み込むこと。第二に、GPU の設計開発と供給のサイクルを加速させること。第三に、電力と立地のポートフォリオを早期に押さえること。すなわち、両社の課題をロードマップに前倒しで埋め込み、供給と資本の不確実性を同時に下げる設計となっている。

提携のスキーム

特徴は相互コミットメントを強く担保する条項設計である。大口引取と設備立ち上げのマイルストーンを資本的リターンに結びつけ、ハードウェア側の成功が顧客側の経済的利益に反映されるように組む。供給側から見れば、数量確度と価格の下支えが得られ、製造投資の意思決定が容易になる。需要側から見れば、技術仕様への影響力を強め、ワークロード適合性を高められる。金融的には、キャッシュフローの急激な上下を慣らす機能も果たす。

NVIDIA との違い

NVIDIA の大型合意が「供給側から需要側へ資本を入れ、需要側がその資金で供給側を買う」循環であったのに対し、今回の AMD との設計は「供給側が需要側にエクイティ・オプションを与え、需要側が長期引取で供給の確度を提供する」という対比にある。どちらも相手の成功を自分の利益に直結させるが、資本の流れる向きとガバナンスの効き方が異なる。

NVIDIA 型は供給側の影響力が強く、需要側の自由度は資本条件に縛られる。AMD 型は需要側が将来の株主となる余地を持ち、供給側の技術優先順位に間接的な影響を及ぼしやすい。

計算能力主義

AI 時代の価値モデルは、最終的に「誰がどれだけの計算能力資源を、どの電力で、どの効率で、どのガバナンスで回せるか」に集約する。Microsoft、NVIDIA、AMD、Oracle との一連の提携は、その前提でつながっている。計算能力資源は通貨であり、通路であり、主権の基礎である。電力の出自、法域、倫理方針、モデルの学習経路までを含めて「どの計算能力空間を選ぶか」という選択が、企業戦略であり、社会の制度設計へと波及する。

この観点では、クラウド事業者との長期コミットメント、専用電源・冷却技術・用地の同時確保、そしてサプライチェーンを巻き込む金融の設計が一体化した案件こそが競争力の源泉である。単価や FLOPS の比較だけでは、もはや優位を測れない。

計算機市場・技術ロードマップへの影響

今後も増え続ける計算能力資源への需要に対応するために、何を成すべきなのかは明確だ。より大きなメモリ空間、より低レイテンシ、より高効率の冷却、より高いエネルギー効率。結果、GPU は引き続き進化していく定めにある。HBM 容量と帯域の段階的増加、GPU 間相互接続技術の進化、ストレージやデータローディングの最適化。改善の余地を挙げればきりがない。

ソフトウェア面では、PyTorch・JAX の後方互換を保ったまま、AMD 側のコンパイラ・ランタイムがどれだけ摩擦ゼロに近づけるか。この先、市場を拡大する過程で、実運用からのフィードバックを最短経路でアーキテクチャへ返すことが、世代間の性能の差を決める。ハードが供給されても、ソフトウェアレベルでの最適化が遅れれば、市場価値に転化しない。

また、電力・冷却・立地は技術ロードマップの一部として扱うべきである。液浸を前提にしたレイアウト、廃熱回収と地域熱供給の統合、再エネと蓄電のハイブリッド、需要に応じたスケジューリング。この「ワットとビット」の連携を前提とした設計が、計算能力資源の真の単価を決める。チップの微細化だけでは、次の 10 年は生き残れない。

結語

OpenAI と AMD の提携は、計算能力資源を軸に資本・供給・電力・ソフトウェアを一体で設計する時代の到来を示した。計算能力主義の下では、勝敗は単一の製品ではなく、生態系の成熟度で決まる。市場の速度はさらに上がるだろうが、基礎は単純である。どの電力で、どの場所で、どのチップで、どのコードを、どのガバナンスで回すか。それを早く、深く、広く設計した陣営が、次の世代の地図を描く。

カテゴリー
雑記

GPU の消費電力はどれほど大きいのか?

GPU の消費電力についてイメージをしやすく比較してみた。
正確な対比ではないし、そもそも単純な消費電力からの比較であるため、発熱量や効率などについては誤解を生む恐れがある。それでも、今の GPU がどれほどのエネルギーを消費しているのかを感覚的に掴むには、こうした単純化が役に立つと思う。

まず、家庭で使うヒーターの電力を基準に置いてみる。一般的なセラミックヒーターや電気ストーブは、弱運転で約 0.3 キロワット、強運転でおおよそ 1.2 キロワットの電力を使う。この 1.2 キロワットという値を「ヒーター 1 台分の強運転」として目安にする。

家庭の電化製品とサーバー機器を同じ単位で見たとき、スケールの違いがどの程度かが見えてくる。ここでは、その感覚を得るための比較をしてみたい。

消費電力の比較(概算)

対象 消費電力
家庭用ヒーター(強) 約 1.2 kW
サーバーラック(旧来型) 約 10 kW
サーバーラック(AI 対応) 20〜50 kW
NVIDIA H200(サーバー) 約 10.2 kW
次世代 GPU(仮定) 約 14.3 kW

家庭用ヒーターは、一般的な家庭で使用する暖房機器の消費電力を示している。旧来型のサーバーラックは 2010 年代までの標準的な構成で、空冷による運用を前提としていた。一方、AI 対応ラックは液冷や直接冷却を前提に設計され、20〜50 キロワットの電力供給が可能になっている。NVIDIA H200 は現行 GPU サーバーの消費電力であり、次世代 GPU は報道ベースの構成を仮定した試算値である。

次に、GPU サーバーがヒーター何台分の電力を使うかを単純に換算してみる。家庭のイメージに置き換えることで、電力の大きさがより実感しやすくなる。

ヒーター換算(ヒーター 1 台=約 1.2 kW として)

対象 ヒーター台数換算
NVIDIA H200(サーバー) 約 8.5 台分
次世代 GPU(仮定) 約 12 台分

2010 年代まで、データセンターの標準的なラックは 1 台あたり約 10 キロワットの電力供給を想定していた。これは当時の汎用サーバーを空冷で運用できる範囲の上限に近い値である。

一方、AI 処理を前提にした高密度ラックでは事情が変わる。液冷や直接冷却によって効率的な排熱を行う構成では、ラックあたりの電力供給能力が 20〜50 キロワットに達することも珍しくない。この基準を当てはめると、GPU サーバー 1 台で旧来型ラックをほぼ専有し、AI 向けラックでも 1〜3 台しか搭載できない計算になる。

  • NVIDIA H200(現行モデル)

    • チップ単位:最大 0.7 kW
    • サーバー単位(8 枚構成 + NVSwitch):約 10.2 kW
    • ヒーター強運転 約 8.5 台分
    • 旧来型ラックを 1 台で満たす規模
    • AI 対応ラックなら 2〜4 台程度搭載可能
  • 次世代 GPU(仮定)

    • チップ単位:約 1.0 kW(報道ベースの推定値)
    • サーバー単位(8 枚構成 + NVSwitch 想定):約 14.3 kW
    • ヒーター強運転 約 12 台分
    • 旧来型ラックでは収まらない規模
    • AI 対応ラックで 1〜3 台程度の想定

こうして見てみると、家庭用ヒーターと GPU サーバーの電力差は直感的に理解できる。GPU はもはや単なる電子機器ではなく、電力インフラの構成要素に近い存在になっている。

家庭でヒーターを 10 台同時に動かすことを想像してみると、GPU サーバー 1 台の重さが実感できる。AI モデルの性能が向上するほど、必要な電力は急増しており、データセンターの設計は電力供給と冷却技術を中心に再構築されつつある。
計算能力を高めるということは、同時に電力をどう扱うかという新しい課題を突きつけており、GPU の進化はエネルギー産業との境界をさらに曖昧にしている。

カテゴリー
雑記

NFT の再評価と生成時代の信頼構造

NFT は一時期、デジタルアートの象徴のように扱われた。その「唯一性を証明する」という仕組みが、デジタルの無限複製性に対する対抗軸として新鮮に映ったのだと思う。作品そのものよりも、その存在を証明する仕組みが価値を持つという発想は、確かに革新的だった。

しかし NFT は急速に商業的な熱狂に飲み込まれた。本来の思想を理解しないまま市場だけが拡大し、無数のデジタルゴミが生まれた。アートの文脈から逸脱し、誰も見ないコレクションが量産される。その姿は、技術の本質よりも流行の波に飲まれる人間の脆さを映していたのかもしれない。

あの時代は、少し早すぎたのだと思う。だが今、生成 AI がもたらした状況はあの頃とは違う。画像も音声も映像も、わずかな入力から生成され、真贋の区別が難しくなっている。現実と虚構の境界が薄れるこの時代において、「誰が」「いつ」「何を」作ったかを証明する仕組みの必要性は、再び強まっている。

AI が生成するコンテンツは、著作というより生成ログに近い存在である。その無数の派生物を追跡し、出所や改変を記録する仕組みが求められるとすれば、NFT の基盤構造はそこに適している。改ざん不能な証明、分散的な所有、追跡可能な履歴。それらはアートではなく、情報の信頼性を担保するための機能として再定義されうる。

Sora 2 のような映像生成 AI を見ていると、まさにその必然を感じる。生成物があまりにもリアルで、人の手による創作と区別できない時代に、私たちは再び唯一性を求め始めている。それは美術的な意味ではなく、社会的・情報的な意味での唯一性だ。NFT はアートの熱狂から離れ、信頼と出所の構造として静かに再登場するのではないだろうか。

技術の評価は常にその文脈によって変わる。NFT はバブルの象徴として終わったわけではない。むしろ、AI 時代の「本物とは何か」という問いに対して、最初に構造的な解を提示した技術だったのかもしれない。いまこそ、あの仕組みを再び考え直すときだと思う。

カテゴリー
雑記

API が不要になる社会

ここ数ヶ月、自分自身がどれほど AI に融合しているのかを振り返ると、すでに日常の大半は AI と共にあることに気づく。調査や細かな作業はもちろん、コードを書くことも AI に委ねられる。特に、自分しか使わない業務効率化のツールが完全に AI によって自動化できるのは、恐ろしいほどの変化だと思う。

その中で特に興味深いのは、銀行のオンライン操作のような複雑な処理ですら、個人の用途に特化して自動化できるようになったことだ。例えば、銀行の明細を取り込み、自分の基準で分類し、会計データとして整理する。かつては金融機関や会計ソフトの「枠組み」に従わなければ不可能だったことが、いまは AI に自然言語で指示を出すだけで実現できる。

ここで重要なのは、商用製品のように「万人が使える汎用性」を満たす必要がないことだ。自分だけの細かなニーズや、自分にしか分からないルールや例外処理をそのまま AI に落とし込める。従来なら「そんな少数の要望には対応しない」と切り捨てられてきた領域が、AI を介すことで個人レベルで可能になった。汎用性の制約から解き放たれる価値は大きい。

さらに革新的なのは、API が不要になったことだ。これまでは外部接続が前提のサービスでしか自動化は難しかった。だが、AI は人間がブラウザやアプリを操作するのと同じ形で情報を扱える。つまり、サービス提供者が「外部にデータを出す設計」をしていなくても、AI が自然に取り込み、自分専用の処理フローに組み込める。利用者側から見れば、提供者の思惑を飛び越えてデータが自由に流通することを意味する。

Tesla Optimus の記事でも触れたが、インターフェイスを変えずに社会を置き換えていく流れは、これからますます強まるだろう。サービスの設計思想に縛られず、利用者が自由に扱えるという点で、AI は大きなトレンドを示している。

この構造は力関係の逆転を引き起こす。これまでサービス提供者が「どのように利用できるか」を規定していた。だが AI を仲介すれば、利用者が自分の思う形でデータを扱えるようになる。提供者が API を公開するかどうかに依存せず、利用者自身がデータを自動化の回路に流し込めるようになったとき、主導権は完全に利用者側に移る。

銀行に限らず、あらゆる「サービスの都合に合わせて我慢していた作業」は、AI の登場によって個人が設計し直せるようになった。細やかなニーズを反映し、煩雑さを消し、外部の制約を飛び越える。これまでサービス提供者が握っていたデータの力学は、確実に揺らぎ始めている。

もっとも、AI もまだ過渡期にある。ひとことで AI と言っても性質は様々で、現状は人間がそれを使い分ける必要がある。クラウドホスティングの AI、ローカル環境のプライベート AI、自社データセンターで稼働する AI。用途によって得意不得意が異なるし、データ主権の観点からも選択は慎重にすべきだ。

それでも、多数の AI と共存することで、日々の業務が並列処理へと移行している感覚がある。文脈の異なる業務を並行して実行できる効用として、常に重要な意思判断に集中できる。だが一方で、その判断に必要な調査の多くを AI に委ねるようになったことで、「どこまでが自分自身の意思なのか」は曖昧になりつつある。そこにこそ、AI と融合するおもしろさがあり、同時に健全性やデータの取り扱いにこれまで以上の重要性が求められる時代に入ったのだと思う。

カテゴリー
雑記

大企業の信用を無力化する嘘をつかないインフラ

製造業で「検査データの改ざん」が報じられるたびに思うのは、あれは一部企業の不正というより、社会構造全体の問題だということだ。

嘘をつかざるを得ない環境。嘘をついた方が得になる仕組み。そうした構造がある限り、不正は個人や組織の倫理ではなく、システムの問題として捉えるべきだと思っている。
だからこそ、技術的に「嘘をつかなくて済む仕組み」が登場したときには、ためらわずに使うべきだ。

大企業が提供する製品やサービスが高くても売れるのは、信頼があるからだ。品質や実績もさることながら、過去の取引履歴や顧客からの評価といった無形の信用が価格を支えている。
だが一度でもその信用が傷つけば、価格優位性は簡単に崩れる。そして、その影響はサプライチェーンを通じて連鎖的に広がる。社歴が長いほど、巻き込む範囲も深刻になる。

一方、ベンチャー企業は価格で勝負することが多い。実績がない代わりに、価格を下げて信頼を積み上げていくやり方だ。今まではそれが唯一の道だった。
でも今は違う。たとえば製造プロセスや検査結果をリアルタイムで記録し、改ざん不能な形で蓄積する仕組みがあればどうか。それがあるだけで、「嘘をついていない」という事実を客観的に証明できる。
つまり信頼の構築が、時間依存ではなくなる。積み上げ型の信頼から、仕組みによる信頼へと変わるのだ。

だから、これからモノづくりに挑む企業は、創業初期から以下の視点を持っておいた方がいい。

品質や検査データの改ざんが不可能であることを証明できる履歴を残しておくこと。大手企業で過去の改ざんが明るみに出た瞬間に、その透明性が逆転の武器になる。しかも、その履歴の価値は時間とともに上がっていく。だからこそ、「今すぐに始めること」が重要になる。
価格以外の競争力、つまり「信用という資産」を蓄えるために、データを可視化すること。これは後からでは絶対に手に入らない。

そして、すでに信用を持っている大企業にとっても、この構造変化は他人事ではない。
信頼されているからこそ高価格で勝負できるが、その信頼はひとつの不祥事で崩れる。しかも、歴史が長いほど不祥事の影響範囲は広がる。連結する企業の数だけ、不信の拡散速度は加速度的に増していく。
だから、いま必要なのは「嘘をつけない環境」そのものだ。リアルタイム監査による検査データの保証、サプライチェーン全体での透明性確保。そういった仕組みが導入されていれば、たとえ問題が起きても早期に発見し、影響範囲を最小限にとどめられる。
これはリスクヘッジであると同時に、現場の心理的安全性にもつながる。嘘をつく必要がなければ、現場は正直に仕事ができる。失敗があっても隠さず開示できる。開示されれば改善できる。

つまり、これは「不正を防ぐ」仕組みではなく、「信頼を育てる」仕組みだ。
その履歴があれば、将来にわたって企業は不正をしていないことを証明できるし、社会はそれをもとに取引先を選ぶようになる。データが資産になる時代において、「改ざん不能な履歴」ほど強力な証拠はない。

そして、その履歴は今すぐにしか積み上げられない。明日からでは遅い。
履歴があるということは、嘘をつく必要がなかったことの証明であり、誠実さの記録であり、未来の競争力だ。

カテゴリー
雑記

Amazon の限界(あるいは Alexa 呪文詠唱講座)

どう考えても間違っていると思う。Amazon Echo、つまり Alexa の挙動だ。

先に断っておくが、僕は大の Alexa 通であり、ファンだ。その分野を切り開いたイノベーターをリスペクトすると決めているので、ホームオートメーション、スマートスピーカーに関しては、徹底して Amazon のエコシステムを貫いている。HomePod はスピーカーとしてしか使っていないし、Siri に呼びかけることは無い。

インターネットの構造がまさにそうであるように、良くも悪くも中央集権構造で徹底して造られているのが、Alexa エコシステムだ。初期の頃はそれで良かった。すべての個人情報は Amazon に集約すれば安心だし、それでこその付加的な価値を感じられた。消耗品の購入リマインドや音声を通した商品の購入など、まさに Amazon エコシステムの賜だ。

しかし、それが一向に進化しない。AI そして IoT 時代のコンシューマーデバイスで乗り遅れた Amazon の悪いところが全部出ているように思う。ハードウェアとしての選択肢が増えたり、価格が驚くほど安くなっているのは良いとは思う。しかし、その進化の方向は、ユーザーとして僕が望んでいた方向性とは違う。

消費者の行動を一番把握しているのが Amazon なのだから、現在の判断は間違っていないのだろうし、きちんと誰もが欲しいものを提供しているとは思っている。でも、あるべきスマートスピーカーの形とは到底思えない。読書端末として市場で圧勝している Kindle でさえ、ソフトウェア側、インフラ側においては設計思想が、昔ながらのいつもの味になっている。

致命的だと思う問題の実例を記しておこう。

まず、複数の拠点を管理したら簡単に破綻する。今手元にある Alexa は、家やオフィス、合計4カ所を操作している。Echo 端末の数は、10台を超えている。その状況で「ただいま」と言えば電気が点いてほしいのは当然だが、そんなシンプルなワードで自動化すれば、すべての場所で電気が点く。それに、日本語では「電気」は「照明」ではなく「電源」と理解されてしまう。電気を消そうとすれば、すべて消える。下手をすれば、すべての場所で、すべての電源が落ちる。

それぞれの Echo 端末は、担当する家と部屋がはっきりと分かれており、担当する家電もすべて紐付けてある。それでも、簡単に越境し、権限を侵害し、余計なことをする。

解決策は、すべての家電に固有の名称を設定することや、すべての場所、部屋に応じた、全く異なった、解釈の間違えようのない命令文を設計することだ。つまり、一種の、自分と Alexa 専用の言語の構築である。

その実現プロセスは、プログラミングや、魔法の呪文に似ている。

Alexa + 対象とする部屋 + 対象とする (家電 or グループ) + 期待する挙動

この文法の基本を押さえた上で、個別に命令を考えて設計していくことになる。もちろん最初にやるべきは、ルールの設計であるべきだ。統一感のあるルールに従って、部屋や家電の固有名称を設計しなければならない。これを間違えると、いまどの対象に命令を発しているのかが分からなくなってしまう。

応用として、頻繁に使う呪文を別の呪文で表す技法がおすすめだ。定型アクションとして、特定の呪文によって、あらかじめ指定しておいた呪文を複数発動させる方法になる。引数を渡せるわけでは無いが、関数の呼び出しに似ている。

Alexa + 固有ワード

非常に便利で、複数の呪文を一括して呼び出せたり、呪文詠唱を短くできる利点があるのだが、注意点もある。一般用語や予約語と重複はできないのだ。つまり、「いってきます」などの予約語を使うと、挨拶を返されてしまったりする。

ではどうするか。文字通り、呪文と考えて設計するしかない。

例えば、僕がこれまでに様々なことを試した結果、毎日のように使うようになった呪文を挙げておく。なお、呪文の種類が今いる家や部屋などごとに異なるので、場所によってコンテキストを切り替えられる。

Alexa + バルス
該当する家のすべての照明を消して、その後掃除をする呪文。ゴミをゴミのように掃除する。

Alexa + 領域展開
バルスと同じだが、該当する家が違う。違いは、エンディングソングを流すこと。

Alexa + 簡易領域展開
領域展開の簡易版。掃除はしない。

Alexa + エンペラーモード
照明の色を切り替えて集中モードにする。また、iPhone/Mac を集中モードにし、一切の通知をオフにする。音楽と、部屋の外にあるサインの点灯によって、集中モードへの移行を外部に知らせる。

Alexa + (x) 号機 (出撃 or 撤退)
x に該当する識別番号を持つエアコンを起動する。応用として、全機の出撃や撤退も可能。

このような呪文が、数十個用意されている。正直、バカみたいだと自分でも思っている。しかし、そうしなければ命令が通じないし、呪文詠唱が長くなってしまう。

この例だけでも、いかに期待を外れた挙動なのかが伝わると思う。

正直、言語の認識精度に関しては、諦めている。日本語で使えばそうなるのは仕方なく、Amazon が悪いわけではない。ただ、英語と日本語を併用して使える仕様にはしてほしかった。とはいえ、Google もそれをうまくできているとは言えないので、単純に日本語の限界なのだろう。

他にも、Amazon においては、各種アカウントの統合に関して、そもそものデータベース構造や認証システムの構造に起因する問題を抱えている。たとえば、未だに複数の国の Amazon でアカウントを持っている人が統合を試みると、生涯つきまとう厄介な問題に直面することになる。ただし、これは今回の本題ではないので詳しくは書かない。

Amazon のすごさは、コンシューマー市場の理解と、なにより AWS、サーバーサイドでの影響力だ。だからこそ Alexa は今日も稼働し、誤った認証をせず、遠隔での操作も実現できている。

しかしその強みも、すでに時流から外れつつある。トッププレイヤーの Amazon が、イノベーションのジレンマの実例のように、エッジ側での演算や分散認証、個人情報の保護といった新しい領域では後れを取っている。むしろ、Apple の方が先を行っている。

もし Echo 端末側、Alexa に生成 AI が搭載されれば、まず目の前の重要な問題は解決されるだろう。しかし、その演算を Amazon らしくクラウド側で処理するとなれば、演算コストは跳ね上がる。エッジ側で処理するには端末価格が高騰し、そもそも既存のエコシステムを捨てなければならない。

いつの日か、呪文詠唱から解き放たれる日は来るのだろうか。

カテゴリー
雑記

AIoT 時代の人間以外へのブランディング

2024年頃から、Tesla は T のロゴを減らしはじめた。ブランド認知のためにテキストロゴを打ち出している側面もあっただろうが、最近はそのテキストすら削りはじめたように見える。おそらくブランドデザインとして、次のステージに進もうとしているのだろう。

最終的にはテキストも消え、フォルムだけで「それだ」と認識される方向へ向かっている。一般的なコンシューマー製品において、それは最上級のアプローチであり、ごく限られた勝者だけが到達できる究極のブランディングの形だ。

Macintosh 時代、Apple のリンゴロゴがあらゆる場所に使われていたが、Steve Jobs がそれを減らすよう指示したという話を思い出す。結果として、今ではシルエットだけでも MacBook や iPhone とわかる。フォルムそのものがブランドを形成し、模倣品まで生まれるほどだ。

ブランドとは本来、焼き印であり、他者との差別化が目的だ。人に効率的に認知されることを狙い、考えさせずとも本能的に「それだ」と伝えることが重要になる。そのために、人類が自然との共存の中で獲得してきた本能を想起させ、脳の認知プロセスに働きかける手法は今も有効だ。無機質なブランドイメージを構築してきた Apple や Tesla でさえ、プロダクトデザインや UI 設計でそうした要素を組み込み、現在の価値を形作ったと僕は思う。

だが、それは今後も通用するのだろうか。

人間の数は、AI や IoT デバイスの数と比べればごくわずかだ。今は人間が支払う側だから、その価値を最大化する方向へ市場は動いている。しばらくは変わらないだろう。だが、人間に認知されること以上に必要なブランディングが、この先はあるのではないか。

そう考えると、Apple や Tesla、そして Big Tech 各社の製品は、次のステージへのチケットをすでに持っているように見える。UWB チップなど新しい通信規格を採用し、光学的認識に最適化した形状にすることで、人以外からの認知を効率化している。Google の SEO におけるメタタグや、Amazon の段ボールですら、その一例だ。

従来はインターネットプロトコルによる固有 ID では不可能だった、あるいは高コストだった個別認識や認証が、センサー技術や暗号技術の進化によって容易になりつつある。エネルギー効率も改善し、物理的なメッシュネットワークも整い、ブランディングはついに次の段階へ移ろうとしている。

ブランディングの本質は差別化と付加価値の創造だ。そのために人間の脳に普遍的に存在する文脈やメタファーを活用したり、露出を増やして既存の認知を上書きする。僕はマーケティングの専門家ではないが、現状はそう理解している。

そして今、その対象は人間である必要があるのかという問いが生まれる。
人間が意思決定の主体であり続ける保証はない。限られた市場での差別化に、どれほど意味があるのだろうか。

もちろん現時点では、人間へのブランディングには意味がある。だがその先に進むなら、Apple 製品が統一されたデザインを持ち、Tesla が無機質で抽象的な形状へ向かうように、限られた計算資源の中で効率的に認知されることこそが価値を最大化する道になる。無個性化はデバイスによる認識効率を高め、人間の認知負担も減らす。

いつまでも「人間が意思判断を担う」という前提にとらわれず、これからのブランディングは設計されるべきだ。

モバイルバージョンを終了